Machine learning, aka ML, is living the third period of recognition. Almost any company, regardless of its size, uses machine learning to process the data and aggregates them in a way that lets us make predictions.

These predictions can be applied in many fields. Questions such as what will happen in the stock market or the weather or the prediction of a robot movement after an action, can be answered due to machine learning.

Would you be able to predict the ML history?


In a world where data is becoming more valuable than gold, machine learning is trying to use these data for marketing, customer satisfaction, problem-solving and many many other reasons. However, the question arises, how we extract the maximum possible value from a given dataset? This is a question that I will attempt to tackle in this article.

# Import the required libraries
#
# import pandas
import pandas as pd
# import numpy
import numpy as np
np.seterr(all='warn')

# import matplotlib for visualization
import matplotlib.pyplot as plt

# Read your collected data
data = pd.read_csv("car_pricing.csv") …


What is a linear regression?

Linear regression is a statistical procedure for finding the relationship between two (or more) continuous quantitative variables. For example, a real estate agent knows that the square footage of the house is related to the price of the property. Machine learning embraced this idea and used it to predict an unknown quantity (called a dependent variable) from known quantities of another variable (called an independent or predictor variable). That means that if we know the square footage of a house, we can predict the cost of it.

When it comes to relationships, there are three types. We have already discussed…

Evangelos Patsourakos

Computer science became my passion since I entered university. Programming always keeps me motivated because of the fact that it allows me to improve our lives.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store